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I. ABSTRACT

Abstract—Recorded lecture videos are an increasingly impor-
tant learning resource. However, traditional video format does
not allow quick navigation to the desired content of interest.
Recent research has enhanced navigation by dividing lecture
videos into chapters and creating a summary of each chapter.
The visual content on lecture video frames represents a valuable
source of information for identifying topic boundaries as well
as summarizing content. The focus of the research presented in
this paper is to accurately identify visual objects in lecture video
frames. The methods developed for camera videos are not directly
applicable here as the visual content includes charts, graphs,
and illustrations intermingled with text. A common approach
based on locating regions with continuous pixel changes has a
key limitation that logically consistent visual objects can have
modest size gaps inside them. The result is over-segmentation,
where a logical object is split into multiple objects if the gap
threshold is too low, or under-segmentation, where adjacent
objects are recognized as a single large object if the gap threshold
is too high. This paper introduces a novel approach that exploits
the observation that components of logical objects often have
color and geometrical similarity. In our methodology, first a
relatively large number of visual elements are identified with
a small gap threshold. Subsequently, these visual elements are
selectively combined using gap along with color and geometrical
similarity. An evaluation was conducted with a suite of 170 lecture
video frames from STEM coursework. The results demonstrate
the significant impact of color and geometry in improving the
accuracy of visual object identification in lecture video frames.

II. INTRODUCTION

Recorded lecture video is an essential learning resource that
complements a conventional live lecture [1]. Videos provide
learners an opportunity to access lecture content anytime
and anywhere. Students can employ video to recover from
a missed class or to review challenging topics. Studies show
that students take advantage of recorded lectures to prepare
for exams and tests, and they can have a positive impact on
overall grades [2].

The main limitation of the traditional video format is the
lack of quick access to the content of interest. Scrolling back
and forth to find the desired content in a long lecture video is
time-consuming and limits the usage potential. Lecture videos
lack indexing capabilities akin to a table of contents or a list
of tables and figures in a textbook.

This research has its roots in the VideoPoints project, an
advanced lecture video platform to improve navigation inside
a lecture video, available at www.videopoints.org. Videopoints
presents a lecture video as a sequence of topical segments

with a text and visual summary of each subtopic segment
[3], [4] as illustrated in Figure 1. Users can quickly navigate
to the content of interest by viewing summaries of different
topic segments. Currently, topic transitions in Videopoints are
identified by analysis of screen text. However, we noticed
several instances where image similarity analysis would have
improved results.

Fig. 1. Videopoints player showing topical indexing and summaries

It is also clear that the visual content in a lecture video is
important information for improving navigation. The objective
of the research presented in this paper is to accurately identify
visual objects in lecture video frames. The results will be
applied to improve lecture video navigation with more accurate
topic transitions and improved summaries.

Lecture video frames are different from movie video frames
as they contain charts, graphs, tables, illustrations, and pho-
tographs. The traditional approach to identifying visual objects
on a video frame is to locate regions of pixel intensity changes
with a sliding window, which assumes that blank space sepa-
rates visual objects. This approach has significant limitations
that became clear in the context of previous research [5] and
poses a unique challenge. The fundamental issue is that an
author’s intended logical illustration may not align with a
contiguous set of physical drawings reflected by pixel changes.
For instance, a flow chart may have gaps between steps,
although it is a single logical object. At the same time, an
author may place multiple visual objects close to each other
that may get recognized as a single object.

The insight that motivated this project is that nearby visual
entities are more likely to be part of the same visual object
if they share other attributes, specifically color and local
geometry. This paper investigates the role of these factors



in the identification of visual objects in lecture videos. Cor-
relation between color histograms is used to measure color
similarity, and keypoints similarity estimates commonality in
local geometry.

This paper introduces a new algorithm named Logiform
that combines color histograms, keypoints, and pixel inten-
sity changes for visual object identification. The algorithm
was implemented and evaluated on a suite of lecture video
frames from STEM coursework. Results show that color and
local geometry can play an important role in improving the
performance of visual object detection.

III. RELATED WORK

The broad motivation for this research is to improve the
navigation of lecture videos. Active research in this direction
focuses on dividing a lecture video into segments covering
subtopics [3], [6]–[8]. Some approaches identify topic tran-
sition points using speech text and/or screen text extracted
from lecture video frames. Other efforts focus on indexing
or summarization of lecture video content in a variety of
ways. They span selecting important keyframes based on i)
historical user interaction [9], ii) amount of textual content
[10], or iii) amount of visual content and display duration
[11]. In our prior work, we have developed summaries of
lecture videos containing keywords and important images [4].
Research presented in this paper aims to accurately identify
individual visual objects, which in turn can have a positive
impact on enhancing this direction of research.

The general problem of object detection in videos has
been an active area of research for decades in the context
of a number of applications, including autonomous vehicles,
surveillance, industrial automation, and robotics [12]. How-
ever, identifying visual objects in a lecture video frame is
a unique problem. Common challenges for general object
detection tasks such as illuminations, occlusion, shadows,
and complex backgrounds do not apply to the lecture video
domain. Common visual objects on lecture video frames are
charts, graphs, and illustrations, not camera images. Methods
for feature extraction in traditional object detection can be em-
ployed to identify fine-grain visual elements, but they are not
sufficient to address the challenge of identifying meaningful
visual objects created by the authors of video content.

The visual object detection on the lecture video frames
is a relatively under-explored area. ViZig [13] identifies the
location of “anchor points” in lecture video frames that can be
figures, tables, equations, flowcharts, code snippets, and charts.
They formulated a classification problem that employed a
deep convolution neural network using unconstrained internet
images. However, this work does not address identifying the
location or details of these objects that are needed for tasks like
topic discovery. In a related project [14], they associate a text
description with an extracted visual element. Their method for
extracting visual elements groups together neighbors based on
factors like the height and centroid of their bounding boxes.
Our research explores additional features including color and
geometry, and is driven by diverse STEM coursework.

IV. MOTIVATION: COLOR AND GEOMETRY IN VISUAL
CONTENT IDENTIFICATION

Algorithms for identifying visual objects that rely on the
assumption that a visual object is surrounded by clear space or
a gap are constrained to the amount of separation (clear space)
between them. We have discovered that if this gap threshold
is too small, then a composite figure consisting of multiple
components is often identified incorrectly as multiple objects,
which is referred to as over-segmentation. On the other hand,
a large gap threshold will often identify multiple disparate
images as a single object. Hence, it is important to capture
semantic or logical relationships between image components
in the context of lecture video frames.

We present some example video frames that motivated this
research. Text boxes are identified and replaced by blank space
prior to visual object analysis but retained here for context. In
the following figures, dashed green boxes represent the ground
truth visual objects in the frames.

Figure 2(a) consists of several small images that are com-
ponents of a logical flowchart. A basic spatial gap based
algorithm may incorrectly identify individual images as visual
objects because of the space separation between them. Figure
2(b) consists of three visual sub-objects marked A, B, and
C. The author’s intent and human intuition is that A and B
are components of a single visual object, while C is a graph
that is clearly a separate entity. However, a space gap based
algorithm is likely to keep A and B separate because of the
significant gap between them, and may instead combine B and
C based on the small gap. Finally, Figure 2(c) consists of 4
image sub-objects labeled D, E, F, and G. Clearly, D and E are
components of a single logical visual object, but a gap based
algorithm may identify them as separate objects. On the other
hand, F and G are intended to be separate objects, but a gap
based algorithm is likely to identify them as a combined object
because of the very small gap between them.

The point is that relying entirely on spatial separation to
identify and separate visual objects is error-prone. We now
focus on the color and geometry aspects of the visual objects in
these figures. In Figure 2(a), small images that are components
of the flowchart have similar color and geometric properties.
In Figure 2(b), sub-objects A and B have strong geometric
and color similarities between them, but no similarity with C.
Finally, in Figure 2(c), there is a strong color and geometric
similarity between sub-objects D and E, while they have little
similarity to any other visual sub-objects. Sub-objects F and
G have a very small gap between them but a low degree of
color or geometric similarity. We skip details for brevity, but
it is clear that considering color and geometric similarity can
lead to improved object identification in these examples.

In summary, space separation based visual object detection
faces significant challenges in the context of lecture video
frames. At the same time, components of a visual object often
share color and geometric similarities. This paper explores
how these similarities can be employed to enhance the ac-
curacy of visual object identification in lecture video frames.



(a) (b) (c)

Fig. 2. Sample lecture video frames to highlight the limitations of a gap based approach to visual object identification

V. VISUAL OBJECT IDENTIFICATION

We present a framework for identifying visual objects in
a lecture video frame. The goal is to identify parts of a
video frame that constitute logically meaningful objects to
developers and consumers of lecture videos, not just physically
contiguous pixels. The innovation is employing color and
geometrical similarity in addition to local pixel variance in
locating the boundaries of visual objects.

We refer to our proposed method as the LogiForm algorithm.
The input to the algorithm is a lecture video frame with
RGB pixel values, and the output is the coordinates of a
set of rectangles that represent the bounding boxes of the
visual objects. In the preprocessing steps for this algorithm,
the video frame is resized to Standard Definition resolution
if needed, and all text regions are identified with Optical
Character Recognition [15] and masked. Hence, those regions
appear as white space with no pixel variation. The algorithm
consists of three major steps as depicted in Figure 3. They are
outlined below and then covered in more detail.

Fig. 3. Steps of the LogiForm algorithm

1) Spatial Oversegmentation: A simple sliding window
technique is employed to detect contiguous regions with
pixel variations surrounded by gaps. The parameters are
set to detect a larger number of regions than the likely
number of actual visual objects.

2) Graph Construction: The visual object regions identified
become graph nodes. Edges between graph nodes are
assigned weights based on the Euclidean distance as well
as color and local geometry (dis)similarity.

3) Object formation: A hierarchical clustering algorithm is
applied that selectively merges graph nodes based on the
edge weights, yielding the final visual objects.

In the post-processing phase, some visual objects are re-
moved based on real-world considerations. These include

objects that are too small or too large or have a very large
or small height to width ratio. We now detail the three main
steps in visual object identification.

A. Spatial Oversegmentation

A video frame is segmented into regions based on the
variation in pixel intensities, with a threshold selected to favor
over-segmentation. First, the pre-processed image is converted
to a grayscale image. Then, we calculate the local variance
at each pixel compared to neighbors using a sliding window
technique. Thresholding is applied to recognize foreground
pixels based on their high variance. A blob coloring algorithm
using 8-connectivity neighborhood is applied to combine high
variance pixels in the thresholded binary image into connected
regions. The result is a set of regions, each representing an area
of visual content on the lecture video frame.

Sliding window size is a key parameter in this segmentation
step. A large window size is likely to lead to undersegmenta-
tion where some neighboring visual entities may be identified
together as a single visual object, while a small window size is
likely to lead to oversegmentation where a meaningful visual
object with small space gaps inside may be recognized as
multiple visual entities. In our experiments with a set of 170
lecture video frames, the number of regions identified varied
from 598 for a window size of 3x3 to 452 for a window size of
15x15. The best performance was obtained for a 9x9 window
size. The approach used in this paper aims to over-segment
with a larger number of smaller visual objects in this step and
employ a more sophisticated approach, including color and
geometry considerations, to selectively combine the regions
into larger visual objects. For the experiments presented in
this work, a window size of 5x5 was heuristically selected.

B. Graph Construction

The set of regions identified with pixel intensity-based
analysis form the nodes of this graph. The graph edges have
three attributes:

• Minimum gap (minGap) representing the shortest Eu-
clidian distance between the pairs of nodes representing



regions. The distance value is normalized to a 0-1 range
after accounting for image resolution and frame size.

• Color difference (colorDiff ) representing the difference in
color space between a pair of regions. We compute color
histograms for all node regions using the pixel values of
the three color channels of the input frame. Then color
similarity is calculated based on the correlation score be-
tween pairs of color histograms. Finally, we transform the
correlation score to a color dissimilarity score colorDiff
in the 0-1 range to align with the graph representation
where a larger score reflects more distance.1

• Keypoints dissimilarity (KPDiss) captures the (lack of)
local geometric similarity between region nodes con-
nected by the corresponding graph edge based on SIFT
feature descriptors [16] computed on the grayscale frame
for the corresponding regions. The similarity between
pairs of nodes is calculated by the keypoints match ratio
between the SIFT descriptors. The similarity score is
transformed to a keypoints dissimilarity score KPDiss in
the 0-1 range to align with other graph edge attributes.

The final graph edge cost is a linear combination of the
three cost components represented as follows:

edgeCost = minGap ∗ gapWeight+ colorDiff∗
colorWeight+KPDiss ∗KPWeight (1)

where gapWeight, colorWeight and KPWeight are heuris-
tically determined parameters.

C. Object Formation
In this step, hierarchical clustering is applied to the con-

structed graph to selectively combine nodes based on graph
edges representing minimum gap, color, and keypoint similar-
ities. A bottom-up agglomerative clustering algorithm [17] was
employed using the scikit-learn package. Initially, each node
is considered an individual cluster, and pairs of clusters are
combined recursively. A key consideration in agglomerative
clustering is cluster linkage criteria that decides the use of edge
weights to cluster nodes that are formed by combining multiple
cluster nodes. We take the minimum of the edge weights as
the weight of the new edge formed after combining, which is
a natural choice due to the Euclidean nature of the problem.
Another key parameter is the merge Threshold: clusters are
combined in each iteration where the linkage (or edgeCost) is
below the merge Threshold. A higher value of merge Threshold
results in more merges and fewer clusters and vice-versa. We
will report on experiments with different values of merge
threshold. The set of clusters after this step represents the final
image objects.

VI. EVALUATION AND RESULTS

The LogiForm algorithm discussed in Section V was imple-
mented and evaluated in the context of the Videopoints lecture
video platform [3]. We describe the data set and metrics used
for evaluation and present results.

1Order preserving nonlinear transformations were used to account for the
skewed distribution of raw colorDiff and KPDiss scores.

A. Dataset

We have access to a large set of lecture videos from earlier
research conducted on the Videopoints platform [3], [4]. We
selected a suite of 170 video frames from 53 lecture videos
in Biology, Geosciences, and Computer Science. The primary
criterion for the selection of a lecture video frame for this
study is the presence of significant visual content. Ground
truth boundaries for visual objects on frames were provided
by volunteers familiar with the video content using LabelImg,
a publicly available marking tool [18].

B. Evaluation Methodology

The visual object identification framework generates the
coordinates for a set of bounding boxes for detected visual
objects. For evaluation, these are compared against the ground
truth set of bounding boxes. In practice, a 100% match
between the two sets of bounding boxes is unlikely, and
partial matches are important. This is a key consideration in
selecting an evaluation metric. The evaluation was primarily
done with mean Average Precision (mAP), a commonly used
metric in object detection tasks in computer vision. The mAP
is defined as the mean of average precision (AP) for all the
classes, where AP is calculated by the area under the precision-
recall curve for each class. A partial match threshold called
Intersection over Union (IoU) of the two boxes to decide on
a positive match was set to 0.5, a standard practice for object
detection tasks. Measurements were made with an open-source
toolkit [19]. A set of experiments was conducted by varying
parameters in our Logiform object identification framework:

• Merge Threshold was varied from 0.0, representing no
combining of regions in the object formation stage to 0.2,
representing the least constraints on combining regions.

• For each value of the merge threshold, several sets of
values of the parameters gapWeight, colorWeight, and
KPWeight were selected such that their sum equals 1.

We present results on the individual impact of color and
local geometry on performance, followed by results on the
combined impact of color and geometry.

C. Impact of Color

Figure 4(a) plots the performance of visual object identi-
fication with different color weights. A higher color weight
means that color is given more consideration in combining
nearby visual entities than the gap between them. Each curve
represents a different merge threshold implying more merges
during object formation, as discussed in section V. A merge
threshold of 0 is represented by the flat blue line in the figure.
In this scenario, the spatially segmented visual entities are
the final detected objects, and color has no impact. For the
remaining curves, a bell-shaped pattern is observed. As the
color weight increases, performance improves, then reaches a
peak, and starts to drop2. A high merge constraint of 0.2 (red
line) leads to overall poor performance, although it is improved

2Minor variations to general patterns are expected statistical anomalies in
the curves in this section due to the modest size of our dataset.
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Fig. 4. Impact of combining (a) color similarity based on color histogram, (b) local geometric similarity based on SIFT keypoints, and (c) the best combination
of color & local geometric similarity, with the gap in identifying visual objects. A lower/higher merge threshold leads to less/more merging of visual entities
during object formation.

with midrange color weight. The best performance is observed
with a merge threshold of 0.12 (green line) with a color weight
of 0.5. The conclusion is that combining color similarity with
the gap between segmented visual entities plays a significant
positive role in accurately identifying visual objects.

D. Impact of Local Geometry

Figure 4(b) plots the performance of visual object identifi-
cation with different levels of consideration to local geometric
similarity based on keypoints match as detailed in Section V.
For low to moderate values of merge threshold (green and pink
curves), the impact of geometry is similar to that of color,
although the best performance is at higher values of keypoints
weight, and the drop in performance is more moderate as
the keypoints weight is increased to 1. Also, the performance
with the highest merge threshold of 0.2 (red curve) does not
improve meaningfully with geometry considerations. The best
performance is again observed for a merge threshold of 0.12
(green curve) but with keypoints weight of 0.7. Similar to
color, the main conclusion is that combining local geometry
with the gap between segmented visual entities improves the
accuracy of identifying visual objects.

E. Combined Impact of Color and Geometry

We explore the impact of combining color, local geometry,
and gap on identifying visual objects. Figure 4(c) shows
experimental results for the optimal combination of color and
local geometry with gap. In this figure, the x-axis represents
the experimentally measured optimal contribution of color and
local geometry at each point. (Say the gap weight is set to
0.4. For all combinations that add up to 0.6, if color weight
= 0.4 and keypoints weight = 0.2 yields the best results, then
that value is plotted.) The results are similar to those with
color alone presented in Figure 4(a). However, the peak per-
formance obtained with merge threshold = 0.12 (green curve)
is moderately higher than the best performance with color
or geometry alone, implying that combining color and local
geometry provides benefits beyond using them individually.

Fig. 5. Impact of SIFT keypoints based on local geometric similarity over
different fixed color weights.

We provide another view of the results combining color,
local geometry, and gap in Figure 5 but skip the details for
brevity. Here the merge threshold is set to 0.12, the optimal
value based on our experiments. Each curve represents a
fixed color weight with the remaining weight divided between
gap weight and keypoints weight such that the total is 1.0.
gapWeight + colorWeight + KPWeight = 1.0. We note
that the best results are for color weight = 0.2 with 50% of the
remaining weight assigned as keypoints weight. Also, for the
highest color weight of 0.6 (red line), keypoints consideration
does not improve performance.
F. Summary of Results

The key result from our experiments is that consideration
of color and local geometry leads to significant enhancement
in the performance of visual object identification in lecture
video frames, and optimal performance requires combining
them with spatial considerations. A summary of results in the
form of Precision, Recall, and mAP scores is presented in
Table I. The best performance for a traditional pixel variance
based segmentation algorithm was 55.52% mAP obtained with
a window size of 9x9. The performance with our Logiform
algorithm using color or local geometry independently reaches
61.59% mAP and 62.30% mAP, respectively. The performance
achieved using color and local geometry together is 64.28%
mAP representing a 15.8% improvement over the best perfor-



mance with a traditional pixel variance based method achieved
with a 9x9 window size on our dataset. While the performance
of visual object identification is far from perfect, it is important
to note that humans differ considerably in precisely identifying
visual objects in this domain, thereby limiting the best possible
performance against a human generated ground truth.

TABLE I
PERFORMANCE OF VISUAL OBJECT IDENTIFICATION ON LECTURE VIDEOS

Experiments Precision(%) Recall(%) mAP(%)
Segmentation with 9*9 72.39 74.39 55.52

Segmentation with 5*5 73.24 71.97 54.56

Logiform (gap + color) 78.57 76.12 61.51

Logiform (gap + geometry) 79.78 75.09 62.30

Logiform (gap + color +
geometry) 78.89 78.89 64.28

VII. CONCLUSIONS AND FUTURE WORK

Visual content plays an important role in improving nav-
igation and usability of lecture videos. Applications include
dividing a lecture video into topical segments and generating
summaries of the segments. Identifying visual content accu-
rately on lecture video frames is central to these applications.
However, traditional spatial pixel variance based methods have
limited success in this domain as a lecture video frame is
an unstructured document, and the human perception of what
constitutes a logical and meaningful visual entity is different
from the algorithmic approach of using pixel level variance to
form the boundaries of visual objects.

This paper introduces Logiform algorithm, which we be-
lieve is the first work that combines pixel level variance with
color and geometry for identifying visual objects in lecture
video frames. A key problem is that a small spatial gap can
be the divider between a pair of visual objects, or an empty
space inside an object. The hypothesis that we test is that
visual entities separated by a small space that have color and/or
geometrical similarities are more likely to be parts of the same
visual object. Our results show a meaningful 15.8% mAP
improvement with this approach on a data set of 170 frames
from STEM lecture videos with significant visual content.

We believe this paper opens a novel research direction
in forming complete visual objects for lecture video frames
with properties that bridge the gap between logical or human
understanding of visual objects and machine understanding of
pixel variations. Future work will extend the ground truth to
a larger and more diverse set of lecture videos. A larger body
of ground truth will also allow us to go beyond heuristics
for best use of color and geometry information and explore
machine learning based approaches to this problem. We also
plan to study the real-world impact of improved video content
detection by incorporating them into frameworks for indexing
lecture videos and summarization of video content that are
part of the Videopoints advanced lecture video environment.
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